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Abstract

A simple introduction of what is called today as Ratner’s theorems on
unipotent flows with a classical application to Number Theory.

1 Introduction: Homogeneous Spaces

We start with some basic definitions and concepts concerning a sort of prag-
matic treatment to this very introduction of what can be called Homogeneous
Dynamics.

1.1 Actions

Let’s begin with some terminations about actions.

Definition 1. (Left actions). A left action of a Lie group G on a manifold
M is a map

a :G×M →M

(g, p) 7→ g.p := ag(p)

such that g1(g2.p) = (g1.g2).p and e.p = p, where g1, g2 ∈ G, m ∈M with e
being the identity in G.

Definition 2. (Basic notions on group actions)

• An action is said to be smooth if the defining map of the action is smooth.

• The orbit of p ∈M under the action of G is defined as:

G.p = {g.p : g ∈ G}.

• The isotropy group of p ∈M is defined as

Gp = {g ∈ G : g.p = p}.
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• The action is said to be free if

Gp = {e} for all p ∈M.

• A continuous action is said to be proper if the map

G×M →M ×M
(g, p) 7−→ (g.p, p)

is a proper map. Where proper map is defined as a map between topo-
logical spaces such that the preimage of any compact subset is compact
itself.

• An action is said to be transitive if for every p, q ∈M there exist g ∈ G
such that q = g.p.

1.2 Homogeneous Spaces

Definition 3. A homogeneous space is a smooth manifold endowed with a
transitive, smooth action by a Lie group.

Example (Euclidean Group): Consider the group ξ(n) := Rn × O(n) with
the group multiplication (b, A).(b′, A′) = (b+Ab,A.A′) for every b, b′ ∈ Rn and
A,A′ ∈ O(n), where O(n) is the n-dimensional orthogonal group.
ξ(n) acts on Rn via the action

ξ(n)× Rn → Rn

((b, A), x) 7−→ b+Ax.

Since we can obtain any vector from any other just by linear transformations
in Rn, the action is transitive. Then, Rn becomes a homogeneous space under
the action of ξ(n).

Now, we are presenting an important result concerning characterization and
construction of homogeneous spaces.

Theorem 4. (Quotient manifold theorem) Suppose G is a Lie group acting
smoothly, transitively and properly on a smooth manifold M . Then the orbit
space G/M is a topological manifold with a unique smooth structure such that
the quotient map π′ : M → G/M is a smooth submersion.

Proof. See theorem 5.10 in [4].

Theorem 5. (Homogeneous space construction) Let G be a Lie group and
H a closed subgroup of G.

1. The left coset space G/H is a topological manifold of dimension dim(G)−
dim(H) and has a unique smooth structure such that the quotient map
π : G→ G/H is a smooth submersion.
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2. The left action of G on G/H given by

g1.(g2H) = (g1.g2)H

turns G/H into a homogeneous space.

Proof. See example 5.11 in [4].

2 The Orbit Closure Theorem

We begin with some introduction to understand the idea behind the proper
statement of the main theorem.

2.1 What is The Orbit Closure Theorem?

Let’s start with some motivational example to introduce the ideas behind unipo-
tent flows.

Consider the n-torus Tn = Rn/Zn = Rn/ ∼, where the ∼ denotes the
equivalence relation defined by x ∼ y ⇔ x− y ∈ Zn. Each element of Tn is an
equivalence class

[x] = {x+ y : y ∈ Zn} or [x] = x+ Zn.

Any vector v ∈ Rn define a flow φt on Tn by

φt([x]) = [x+ tv] for every t ∈ R.

It is a well known fact that the closure of the orbit of every point [x] is a
subtorus of Tn. (See [5], for example). Being more precise, this is the same as
saying that there exist a vector subspace S of Rn such that:

1. v ∈ S (and from this, the entire orbit φt of [x] is contained in [x+ S]).

2. the image [x+ S] is compact and

3. the φt-orbit of [x] is dense in [x+ S], that is, [x+ S] is the closure of the
orbit of [x].

In short, the closure of every orbit is a nice geometric subset of Tn.

The Ratner’s orbit closure theorem is a far generalization of this simple exam-
ple. Just to give an initial ideia, let’s look at the building blocks of this example.

• Observe that Rn is a Lie group.

• the subgroup Zn is discrete and Tn is a manifold.

3



• the quotient space Rn/Zn is compact.

• the map t 7−→ tv, which appears in the flow, is a one-parameter sub-
group of Rn.

Ratner’s Theorem allows the following:

• Rn can be replaced by any Lie group G;

• the subgroup Zn can be replaced by any discrete subgroup Γ such that
the quotient G/Γ has finite volume and

• the map t 7−→ tv can be replaced by any unipotent one-parameter
subgroup of G.

Unipotent Flows

Let G be a Lie group and Γ a subset of G. We define G/Γ = {xΓ : x ∈ G}
as the set of left cosets of Γ in G. We recall that a square matrix A is called
unipotent when 1 is the only eigenvalue of A.

Definition 6. Let {ut}t∈R be a one-parameter subgroup of G, which acts on
G/Γ by left multiplication. We say that {ut}t∈R is unipotent if the adjoint
representation of every element in this subgroup is a unipotent matrix.

Example 1. Let G = SL(2,R) be the group of 2x2 real matrices with
determinant 1. Define u, a : R→ SL(2,R) by

ut =

[
1 0
t 1

]
and at =

[
et 0
0 e−t

]
.

Easy computations show that ut+s = utus and at+s = atas and so, {ut}t∈R
and {a}t∈R are one-parameter subgroups of SL(2,R). But observe that {ut}t∈R
is unipotent while {at}t∈R is not unipotent (unless t = 0). For every subgroup
Γ ⊂ G consider the flows on G/Γ given by

ηt(xΓ) = utxΓ and γt(xΓ) = atxΓ.

ηt is called horocycle flow on G/Γ and γt is called geodesic flow on G/Γ.

Definition 7. Let Γ be a subgroup of a Lie group G and let B be the Borel-
sigma algebra on G, that is, the smallest sigma-algebra that contains the open
sets of G. Every set in B is called a measurable set.

• A measure µ on G is left-invariant if µ(gA) = µ(A) for all g ∈ G and all
measurable set A ⊂ G. Similarly, µ is right-invariant if µ(Ag) = µ(A) for
every g ∈ G and all measurable set A ⊂ G.

• A subgroup Γ of G is said to be a lattice if Γ is discrete and G/Γ has finite
Haar measure.
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Any Lie group G admits a (left) Haar Measure, that is, a left invariant Borel
measure µ on G. Furthermore, this measure µ is unique up to a scalar multiple.

Theorem 8 (Ratner’s Orbit Closure Theorem). Let G be a connected Lie
group and let Γ be a lattice in G. Let H be a connected Lie subgroup of G
generated by one-parameter unipotent elements. Then for any x ∈ G/Γ there
exists a closed connected subgroup P ⊃ H such that Hx = Px and Px admits a
P -invariant probability measure.

Observe that, when H = {ut}t∈R, where {ut}t is a one-parameter unipotent
subgroup of G, the unipotent flow is given by the action of H by left on G/Γ,
that is, for every x = gΓ we have a flow φt(x) = φt(gΓ) = utgΓ. From this we
can see Hx = {φt(gΓ) : t ∈ R}. The theorem says that the closure of this orbit
is, in some sense, a ”nice” geometric subset of G/Γ.

From example 1, we can see that the horocycle flow is unipotent and we
can apply the Orbit Closure theorem. In fact, one can show that the closure of
every ηt-orbit is dense in the entire space G/Γ.

On the other hand, the geodesic flow is not unipotent and Ratner’s theorem
does not apply. Indeed, it can be shown that some γt orbits are very far from
being nice geometric subsets of G/Γ. For example, some orbits are fractals.
More specifically, for some orbits, if O is the closure of the orbit, then some
neighborhood (in O) of a point in O is homeomorphic to C ×R where C is the
Cantor set.

2.2 Measure-theoretic Versions of Ratner’s Theorem

Now, we try to connect the orbit closure theorem with some measure theoretical
versions. For unipotent flows, Ratner’s Orbit Closure Theorem says that the
closure of each orbit is a nice geometrical subspace of G/Γ. In fact, as we will
see, the orbit turns out to be uniformly distributed in its closure.

Let φt be the flow φt([x]) = [x + tv] on Tn defined by some vector v ∈ Rn.
Let µ be the normalized Lebesgue measure on Tn, that is, with µ(Tn) = 1.

• Assume n = 2 and take v = (a, b). It is a well known fact that if a/b is
irrational every orbit φt(x) is dense in T2. In fact, every orbit is uniformly
distributed in T2: if B is some nice open subset of T2, then the amount of
time that each orbit spends in B is proportional to the area of B. More
precisely, for each x ∈ T2, and letting λ be the Lebesgue measure on R,
we have

λ({t ∈ [0, T ] : φt(x) ∈ B})
T

−→ µ(B) as T −→∞.
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More general, for any continuous function f on T2, we obtain

lim
T→∞

∫ T
0
f(φt(x))dt

T
=

∫
T2

fdµ.

• Assume now n = 3 and take v = (a, b, 0) with a/b irrational. In this
case, the orbits are not dense and not uniformly distributed on T3 (with
respect to the usual Lebesgue measure on T3). Instead, one can show
that each orbit is uniformly distributed on some subtorus of T3: given
x = (x1, x2, x3) ∈ T3, let µ2 be the Haar measure on the horizontal 2-
torus T2 × {x3} that contains x. Then,

lim
T→∞

∫ T
0
f(φt(x))dt

T
=

∫
T2×{x3}

fdµ2.

In general, for any n, v ∈ Rn and any x ∈ Tn, there is a subtorus S with
Haar measure µS such that

lim
T→∞

∫ T
0
f(φt(x))dt

T
=

∫
S

fdµS .

This example generalizes to all unipotent flows:

Theorem 9 (Ratner’s Equidistribution Theorem). Let G be a connected
Lie group, Γ any lattice in G and φt any unipotent flow on G/Γ. Then, each φt-
orbit is uniformly distributed on its closure, that is, there exist a closed connected
subgroup S of G such that

lim
T→∞

∫ T
0
f(φt(x))dt

T
=

∫
Sx

fdµS ,

for every continuous function on G/Γ, where µS is a S-invariant probability
measure on Sx.

This theorem also yields some kind of classification of the φt-invariant prob-
ability measures.

Definition 10. Let X be a metric space, φt a continuous flow on X and µ a
measure on X. We say that µ is φt-invariant if µ(φt(A)) = µ(A) for every
Borel subset A of X and every t ∈ R. We also say that µ is ergodic if µ is
φt-invariant and for every φt-invariant Borel subset A ⊂ X we have µ(A) = 0
or µ(X −A) = 0.
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The following classical result from Measure Theory implies that we can study
any invariant measure by considering only the ergodic invariant ones.

Theorem 11 (Ergodic Decomposition Theorem). Let G be a Lie Group
acting smoothly on X = Γ/G, where Γ is a lattice on G. Let µ be a G-invariant
measure on X.Then there is a measure space (Y, ν) and a partition of X into
G-invariant subsets Xy, y ∈ Y , and measures µy on Xy such that:

1. For any measurable subset A ⊂ X, we have that A ∩ Xy is measurable
w.r.t. µy for ν-almost every y ∈ Y and µ(A) =

∫
Y
µy(A ∩Xy)dν(y).

2. For ν-almost every y ∈ Y , the action of G on X is ergodic w.r.t. the
measure µy.

Proof. See [8] or [10].

Theorem 12 (Ratner’s Measure Classification Theorem). Let G be a
connected Lie group, Γ a lattice in G, φt a unipotent flow on G/Γ. Then, every
ergodic φt-invariant probability measure is of the form µS, for some x and some
subgroup S as in Theorem 9.

The historical development occurred in the opposite direction: the closure
orbit theorem and the equidistribution theorem were obtained from the mea-
sure classification theorem. This reveals something interesting: the knowledge
of invariant measures can lead to information about closures of orbits.

The next proposition illustrates the connection between invariant measures
and closures of orbits in this context.

Definition 13. Let φt be a continuous flow on a metric space X with
σ-algebra Σ.

• We say that φt is minimal if every orbit is dense in X.

• φt is uniquely ergodic if there is a unique φt-invariant probability mea-
sure on X.

• The support of a measure µ on X is defined as the set

supp(µ) := {A ∈ Σ : µ(A) > 0}.

Proposition 14. Let G be a connected Lie group, Γ a lattice in G, such that
G/Γ is compact, and φt any unipotent flow on G/Γ. If φt is uniquely ergodic,
then φt is minimal.
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Proof. Suppose that some orbit φR(x) is not dense in G/Γ. We will show that
the G-invariant measure µG is not the only φt-invariant probability measure on
G/Γ.

Let Ω be the closure of φR(x). Then, Ω is a compact φt-invariant subset of
G/Γ. One also can see that there is a φt-invariant probability measure µ on
G/Γ that is supported on Ω. Since

supp(µ) ⊂ Ω ⊂ G/Γ = supp(µG),

we have that µ 6= µG. Hence, there are at least two different φt-invariant
probability measures on G/Γ, and so φt is not uniquely ergodic.

We can obtain the Orbit Closure theorem from the Measure Classification
theorem as follows:

By the Measure Classification Theorem, each φt(x) is uniformly distributed
on its closure with respect to some invariant probability measure. In particular,
there exists a closed connected subgroup P of G such that

λ({t ∈ [0, T ] : φt(x) ∈ B})
T

−→ µP (B) as T −→∞,

for every open subset B of Px, where µP is a P -invariant probability measure
on Px.

Suppose there exists a nonempty open subset B of Px such that φt(x)∩B = ∅
for every t ∈ R. So, λ({t ∈ [0, T ] : φt(x) ∈ B}) = 0, for every T > 0. From this
we obtain that µP (B) = 0, a contradiction. Hence, the orbit φt(x) visits every
open subset of Px and Ux = {φt(x) : t ∈ R} = Px.

respective
An Outline of the proof of Ratner’s Measure Classification Theo-

rem for G = SL(2,R)

Now, we give the main ideas used in the proof of a version that appeared
in [14], when Ratner proved the Raghunathan’s Conjectures for G = SL(2,R).
The proof is a bit technical and we do not intend to prove every detail. The
ideas in this approach involve the core strategy used by Ratner in the general
case.

Theorem 15. Let Γ be a discrete subgroup of G = SL(2,R), U a unipotent
subgroup of G and µ an ergodic U -invariant Borel probability measure on Γ/G.
Then either 1) µ is supported on a periodic orbit of U or 2) Γ is a lattice and
µ is G-invariant.

Proof. Let the following subgroups be given:

U = {Ut =

[
1 t
0 1

]
: t ∈ R},
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A = {At =

[
et 0
0 e−t

]
: t ∈ R},

H = {Ht =

[
1 0
t 1

]
: t ∈ R}.

Since matrices can be written in upper-triangular form, every unipotent
element of SL(2,R) is conjugate to Ut for some t ∈ R. These subgroups satisfy
the following important relations:

UsAt = AtUse−2t ,

HsAt = AtUse2t ,

for every s, t ∈ R.

Now we form the subgroups W = AH and B = AU with their neighborhoods

W (δ) = {AτHb : |τ | < δ, |b| < δ},

B(δ) = {AτUs : |τ | < δ, |s| < δ}.

Let y = xW (δ), that is, y = xAτHb for some |τ | < δ, |b| < δ. If δ > 0 is
sufficiently small, for any y = xAτHb ∈ xW (δ) and any 0 ≤ s ≤ 1, there is a
unique function α(y, s) that is strictly increasing in s, continuous in (y, s) and
satisfying the condition α(y, 0) = 0, such that yUα(y,s) ∈ xUsW (10δ). Solving
the system of linear equations obtained, we can see that

α(y, s) =
s

e2τ − sb
and that yUα(y,s) = xUsAτ(y,s)Hb(y,s), where

τ(y, s) = ln(eτ − bse2τ )

b(y, s) = b(1− bse−2τ )

are the respective coordinates in the directions of A and H. As can be seen,
these functions are defined only for bs < e2τ , since α(y, s) will have no solution
outside this interval. This tells us that the divergence between points close to
each other in some W -leaf will be very slow in the W-direction, but proportional
to time in the U -direction. In particular, it says that if b = 0, then the two
orbits will diverge only in the U -direction.

If however b 6= 0, then there will be a point in time sθ > 0, such that there
is a y ∈ xW (δ) where yUR does not intersect xURW . The crucial part here is
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that the critical point in time may be made arbitrarily large by making δ small.

In the following, we state the so-called R-property, an important technical
argument which appears originally in [11]. It captures the behavior of this crit-
ical point in time more exactly and plays a crucial role in the proof of Ratner’s
measure-classification theorem.

Lemma 16. (R-property) There exist constants 0 < η < 1 and C > 1 such
that if for some t > 1

|τ(y, t)| = θ and |τ(y, s)| ≤ θ for 0 ≤ s ≤ t,

where y ∈ xW (δ), 0 < δ < θ/10, then

θ/2 ≤ |τ(y, s)| ≤ θ, |b(y, s)| ≤ Cθ/s

for all s ∈ [(1− η)t, t].

Proof. See [12].

Now, let µ be an ergodic U -invariant probability measure on X = Γ/G and
let Λ = Λ(µ) = {g ∈ G : the action of g on X preserves µ }. It is clear from
the definition that U ⊂ Λ(µ). Also, one can show that Λ(µ) is a closed subgroup
of G.

The rest of the proof will basically be split into two cases: the one where µ
is also A-invariant and the one where µ is not A-invariant.

Part 1: µ is not A-invariant

In this part, we give only some sketch of the proof. A complete and detailed
proof can be found in [14].

Lemma 17. If A 6⊂ Λ, then there is an x ∈ X such that µ is supported on the
closed (periodic) orbit xU .

Proof. Since the action of U is ergodic, there is a set F ⊆ X, µ(F ) > 0, such
that, after some sufficiently long time, the U -orbit of every x ∈ F will have
spent almost of its time in some compact set K with almost full measure (say
µ(K) > 0.99). The idea is to use the R-property (Lemma 16) to obtain a small
neighborhood N(x)∩F of some point x ∈ F that looks like some small piece of
the orbit xU , say xU(ξ). This gives us that xU(ξ) has positive measure and we
can take a sufficiently large finite union

P := {xUs : −ξ ≤ s ≤ N},
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ensuring that µ(P ) = 1. Since, PUR does not change the measure, the orbit
must be periodic.

Part 2: µ is A-invariant

Here we give a more detailed proof, also following [14].

Lemma 18. Suppose that A ⊂ Λ. Then, Γ = SL(2,Z) is a lattice and µ is
G-invariant.

Proof. Let f be a continuous function on X with compact support. Since the
action of A on (X,µ) is ergodic, there exists a set Cf ⊆ X, consisting of points
y ∈ X such that

Sf,n(y) =
1

n

n−1∑
i=0

f(yA−i) −→ fµ =

∫
X

fdµ,

that is, Cf is a set of full µ-measure.

Since H-orbits are the contracting horocycles for geodesics in the negative
direction in time, we see that for any z ∈ yH, dX(yA−n, zA−n) −→ 0 when
n −→ ∞, where dX is some metric in X. Since f is uniformly continuous and
Sf,n(y) −→ fµ, it follows that Sf,n(z) −→ fµ, and from this CfH = Cf .

Now we need to prove that Cf is of full ν-measure. Let’s start first consid-
ering the neighborhood

Oδ(x) = xB(δ/2)H(δ) ∩ xH(δ/2)B(δ)

for some sufficiently small δ > 0, and the decomposition of µ on this neighbor-
hood into conditional measures µy(E) = µ(yB(δ/2)∩E) on the leaves yB(δ/2),
y ∈ xH(δ). Since µ is B-invariant, almost every µy is also B-invariant. Hence,
almost every µy is the Lebesgue measure on yB(δ/2).

Since Cf is of full µ-measure and

Cf ∩ xB(δ/2) = Cfh ∩ xB(δ/2)h = Cf ∩ xB(δ/2)h

for every h ∈ H, it follows that Cf ∩ Oδ(x) has the same Lebesgue measure as
Oδ(x). Since ν is the Lebesgue measure up to a constant, Cf must be of full
ν-measure.

Now, let’s assume that f is nonnegative and fµ > 0. By Fatou’s lemma, we
obtain

fµν(X) = fµν(Cf ) =

∫
Cf

fµdν ≤ lim
n→∞

∫
Cf

Sf,ndν =

∫
Cf

fdν =

∫
X

fdν <∞.
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To conclude, we wish to prove that µ = ν/ν(X). By Lebesgue’s dominated
convergence theorem, we obtain that

fν =

∫
X

fdν =

∫
Cf

fdν =

∫
Cf

Sf,ndν −→
∫
Cf

fµdν = fµν(X)

for every uniformly continuous function with compact support, which implies
µ = ν/ν(X) as desired.

3 The Oppenheim Conjecture

3.1 Quadratic forms

Let

Q(x1, ..., xn) =
∑

1≤i≤j≤n

aijxixj

be a quadratic form in n variables with aij ∈ R. We always assume that Q is
indefinite, that is, after a change of variables, Q can be expressed as

Q#
p (y1, ..., yn) =

p∑
i=1

y2i −
n∑

i=p+1

y2i

for some 1 ≤ p < n. Alternatively, we can se indefinite forms as forms that
takes both positive and negative values.

Examples: Q(x, y) = x2−3xy+y2 is indefinite but Q′(x, y) = x2−2xy+y2

is not indefinite.

Proposition 19. If a quadratic form Q is a multiple of a form with rational
coefficients, then the set of values Q(Zn) is a discrete subset of R.

Proof. Let S(x1, ..., xn) =
∑
i,j bijxixj be a rational form, that is, a form with

rational coefficients bij =
pij
qij

. Taking α =
∏
i,j qij we can write S as

S(x1, ..., xn) =
1

α

(
p11α

q11

)
x21 + ...+

1

α

(
pnnα

qnn

)
x2n.

Since qij divides α for every i, j we have that
pijα
qij
∈ Z for every i, j. Then,

αS(Zn) ⊂ Z which implies that S(Zn) is a discrete set. If a quadratic form Q
is a multiple of a rational form S, Q(x1, ..., xn) = βS(x1, ..., xn) for some β ∈ R
and it follows that Q(Zn) is also a discrete subset of R.
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Oppenheim Conjecture (1929). Suppose Q is a indefinite quadratic form
that is not proportional to a rational form and n ≥ 5. Then Q(Zn) is dense in
the real line.

The conjecture was extended by Davenport in 1946:

Oppenheim-Davenport Conjecture (1946). Suppose Q is a indefinite
quadratic form that is not proportional to a rational form and n ≥ 3. Then
Q(Zn) is dense in the real line.

This result was proved by Margulis in 1986 and today is known as Margulis
Theorem:

Theorem 20. (Margulis Theorem - 1986) If n ≥ 3 and Q is an indefinite
quadratic form not proportional to a rational form, then Q(Zn) is dense in R.

Before Margulis, Oppenheim conjecture was attacked by analytic number
theory methods. In particular, it was proved for n ≥ 21 and for diagonal forms
for n ≥ 5.

Margulis proved this in generality using techniques of ergodic theory with
some dynamics on homogeneous spaces. In this work, we intend to prove this
theorem using the Ratner’s orbit closure theorem.

Failure of the Oppenheim Conjecture in dimension 2

Let α > 0 be a real number such that α2 /∈ Q, for example α = 1+
√
5

2 .
Consider the quadratic form

Q(x1, x1) = x21 − α2x22.

Proposition 21. There exists ε > 0 such that for all x1, x2 ∈ Z, |Q(x1, x2)| > ε.

Proof. Suppose, by contradiction, that is not. Then for any 0 < ε < 1 there
exist x1, x2 ∈ Z such that

|Q(x1, x2)| = |x1 − αx2||x1 + αx2| ≤ ε. (1)

We can assume x2 6= 0. If α2 > ε then either |x1 − αx2| < α or |x1 + αx2| < α,
otherwise

ε ≥ |Q(x1, x2)| ≥ α2 > ε,

a contradiction. Without loss of generality, we take |x1 − αx2| < α, so |x1 −
αx2| < α|x2|. From this,

|x1 + αx2| = |2αx2 + (x1 − αx2)| ≥ 2α|x2| − |(x1 − αx2)| ≥ α|x2|. (2)
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Substituting (2) into (1) we obtain∣∣∣∣x1x2 − α
∣∣∣∣ ≤ ε

α

1

|x2|2
(3)

But since α is quadratic irrational (α /∈ Q), there exist c0 > 0 such that for
all p, q ∈ Z, |pq − α| ≥

c0
q2 . This is a contradiction to (3) with ε < c0α.

The main key of the proof is the connection with the Ratner’s Theorem con-
sidering the special orthogonal group of the quadratic form Q.

Definition 22. Let Q be a quadratic form in n variables.

• SO(Q) = {h ∈ SL(n,R) : Q(vh) = Q(v),∀v ∈ Rn} is called the special
orthogonal group of Q.

• As a special case, we write SO(m,n) as the special orthogonal group of
SO(Qm,n), where

Qm,n(x1, ..., xm+n) = x21 + ...+ x2m − x2m+1 − ...− x2m+n.

• Furthermore, we write SO(m) to denote SO(m, 0) which is equal to SO(0,m).

• We set SO(Q)o to be the connected component of SO(Q) that contains
the identity element e.

Outline of the Proof of the Margulis’ Theorem

We assume that Q has only three variables. Since Q is indefinite, Q can be
written as Q2,1 or Q1,2. Observe that Q1,2 and Q2,1 differ by an overall sign
and we take Q0 as the standard quadratic form Q2,1(x1, x2, x3) = x21 + x22− x23.
Then our arbitrary indefinite quadratic form Q is conjugate to ±Q0, that is,
there exist g ∈ SL(3,R) and λ ∈ R, λ > 0, such that Q = λQo ◦ g. We can note
that SO(Q)o = g.H.g−1, where H = SO(Q0)o which is SO(2, 1)o. As we will
see, H ≈ SL(2,R) is generated by unipotent elements and since SL(3,Z) is a
lattice in SL(3,R) we can apply Ratner’s orbit closure theorem.

The Ratner’s theorem says that:

• there exist a closed connected subgroup P ⊃ H;

• Hg = Pg;

• there is an invariant probability measure on Pg;
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One can show that there are only two possibilities for a closed, connected
subgroup of G = SL(3,R) containing H = SO(Q0)o: P = H or P = G. We are
considering the two cases separately.

Case 1: Assume P = G = SL(3,R). In this case, ΓgH is dense in G.

Q(Z3) = Q0(Z3g) (definition of g)

= Q0(Z3Γg) (Z3 = Z3Γ)

= Q0(Z3ΓgH) (definition of H = SO(Q0)o)

is dense in Q0(Z3G) (Q0 is continuous)

= Q0(R3/{0}) (v.G = R3/{0} for all v 6= 0)

= R.

Case 2: P = H.

In this case, we want to prove that Q is proportional to a rational form.
Here we need some standard results of algebraic groups.

Definition 23. A subset H ⊂ SL(l,R) is called Zariski closed if there exist a
subset S ⊂ R[x11, ..., xll] such that H = {g ∈ SL(l,R) : Q(g) = 0 ∀Q ∈ S},
where we understand Q(g) to denote the value obtained by substituting the
matrix entries gij into the variables xij .

We call H the Zariski closure of H, that is, the unique smallest Zariski closed
set containing H.

We can see set as Zariski closed ”if the matrix entries are characterized by
polynomials.

Lemma 24. (Borel density theorem) Let H ⊂ SL(l,R) be a closed subgroup

and let Γ be a lattice in H. Then, the Zariski closure Γ of Γ contains every
unipotent element of H.

Lemma 25. Let C be a subset of SL(l,Q). Then C is defined over Q.

Lemma 26. For a nondegenerate quadratic form Q, SO(Q) is defined over Q
if and only if Q is proportional to a form with rational coefficients.

The proofs of these lemmas can be found in [15].

From those lemmas we can proceed with the proof of case 2. If P = H,
we have gH = gP and by the Ratner’s orbit closure theorem, gH has a finite
invariant measure. Therefore, Γg := Γ ∩ (gHg−1) = SL(3,Z) ∩ (gHg−1) is a

15



lattice in gHg−1 = SO(Q)o. Since H is generated by unipotent elements and
H is closed because is equal to P , Borel density theorem implies that SO(Q)o is

contained in the Zariski closure Γg of Γg. Since Γg ⊂ Γ = SL(3,Z) ⊂ SL(3,Q),

by Lemma 25 we have that Γg is defined over Q. But, since SO(Q)o ⊂ Γg, by
Lemma 26 we obtain that Q is proportional to a form with rational coefficients.

Then, the Margulis’ theorem is proved for n = 3.

The argument can be generalized to any natural n as follows:
Suppose Q is a quadratic form on Rn satisfying the hypothesis of Margulis’

Theorem. One can show that there exist v1, v2, v3 ∈ Zn, such that the quadratic
form Q on R3, defined as Q(x1, x2, x3) = Q(x1v1+x2v2+x3v3), also satisfies the
hypothesis of the theorem. Hence, Q(Zn) is dense on the real line, as desired.
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